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In (1] an optimum shape of a three-dimensional slender body was found on the
basls of Newtonlan flow. The restriction for thickness of the body was dic-
tated by the fundamental necessity to reduce the problem to solving an ordi-~
nary differential equation, since otherwise, the extremals are determined by
a complicated nonlinear second order partial differential equation. In some
cases, however, retaining the expression for the drag obtained in [1], and
restricting the class of admissible surfaces, it is possible to find without
significant complications the optimum shapes of a thick three-dimensional
body. For example, in the class of arbitrary conical surfaces (p(x) = x,
0< <1, Fig.l) the cross section of the body
of minimum drag 1s determined by the condition
of the minimum of the functional
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Here the drag coefficlent ¢, (0n) is assocliated with the maximum cross-
section area § . We note in passing that a drag formula simlilar to (0.1)
has been applied in his studies by G.I.Maikapar.

Below, we consider only conical bodies.

1. The corresponding variational problem is formulated in the following
fashion. In the class of smooth curves, possessing a finite number of points
of discontinuity in the first derivative, we are to determine a closed curve,
for which the functional (0.1) assumes a minimum. As additional conditions,
we shall consider that the maximum cross-section area § and a character-
istic radial dimension r, are glven. (A1l quantities are referred to the
body length, assumed equai to unity). Similar variational problems, as is
well known, are reduced to the sélution of Buler's equation for the function
F=Arr<4+r 1+ r*+ r?r?~l. Moreover, along the extremals, the necessary
Legendre condition Fpy > 0, must be satisfied, and at the polnts of discon-
tinuity of the derivatives, the Welerstrass-Erdman condition
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must be satisfiled.

The function F contains no independent variables, so that the corres-
ponding Buler equation admits the integral
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In particular, it follows from (1.2) that C — Ar2> 0. Let us introduce
the new variables p and z . In terms of these variables equation (3) is
written 1in the form
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We consider the sign of the square root. From the condition that the
quantity under the square root sign be non-negative, we see that 22 < %s,
from which we get p*<{1/s. for the negative sign of the root. On the other hand,
according to Legendre's condition, the lower bound of p*® equals '/, . Con-
sequently, the sign in front of the root could only be positive; and, as 2°
decreases from ®/; to O, p® increases from '/, to =

We note one property essentlal for later discusslon. From the conditions
on the discontinulties (1.1), which may be expressed entirely in terms of p,
1t follows that crossling from one integral curve to another can occur only
eitherPgp4 =1 oo, or at the points of fixed radius r =71, . This shows
that in érder to construct closed extremal curves from integral curves of
different families, it 1s necessary that the variable > assume the value
zero. Then from (1.3), if % > O , we shall have P<<C/Ah, and ¢ > 0, and
the solution corresponding to this 1inequality may be constructed if the
characteristic dimension r, 1s the minimum value of the radius.

If we assume that A < O, then we correspondingly obtain r?>C /A and
¢ < 0. This case corresponds to the problem in which the maximum radius
is the characteristic dimension. The two cases can be studled in an entirely
similar manner, so that in what follows we shall consider only the first case.
We integrate Equation (1.3) from r, to r , and setting r® = p,%t, we get
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We carry out the determination of the constants ¢, and X . From the
condition of the closed extremal and the isoperlmetrilc condition, we have
1 ty
S g(zdt  _ 2n g g(z)dt _ 2ms s O (1.5)
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Here 7 1s the number of double sections from which the extremal is com-
posed. Formula (1.5), starting with some number n , permits the determi-
natlon of the constants ¢ and A for each glven value of this quantity.
As a result, we obtain a countable set of extremals, satisfylng all the
conditions of the variational problem. The form of the cross~sections is
completely determined by the parameters r, and & . Let us now calculate
the drag of the optimum body thus determined. According, to (0.1), the drag
coefficient may be written in the form

- o b .
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2., The relations thus obtained are complicated for actual computations,
so that we shall introduce below some simple approximate formulas for calcu-
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lating solutions. Consider the class of aptimum bodies, for which the para-
meter Aty — 1) (1 + 7o <€ 1. Then, according to (1.4), 23<€ 1. Rejecting in
the expression for ¢(z) terms of order 0(z°), we obtain from (1.4) the
equation of the cross-section contour in the form

o= :t’%[l’ﬁ- Vt.t— t—i—ﬁ'ln(vt"— Vto—il)/(thofk Vt..—t)}w
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Using (1.5), we see that the constants ?, and A* are determined from

the relations 1 _
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According to the latter equations, the constants ¢, and \* depend only
on the parameter g . The drag coefficient (1.6) in %his case 1s glven by
Expression
83'*8’" s 1 - - —_—
Co="gm b= D" +30— "= 3Vah(Ve+ V=11 3

This asymptotic formula is free from any restriction on the thickness of
the body. As 1s cledar from the last relations, for any thickness of the
body, the shape of the cross-section does not depend on r, . For-slender
bodlies, this fact always occurs [1]. Conseguently, even t%ough in Expression
(1.4%) the quantity r, is present, we may expect that in general the depend-
ence of the shape on %his parameter will be weak. However, this approxima-
tion understates significantly the function q(:), and as a result the
approximate formulas are only valid for large values of n and may not be
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used to estimate the smallest possible values of this number. In Fig. 2
there are shown segments of the contour, from which the cross-section of a
star-shaped body may be constructed. A calculation was carried out using
(2.1) for the number of points n = 15 for several values of the parameter

g8 . Comparison with the results obtained from the slender body formulas [1]
shows that for large values of g the contours coincide. Consequently, the
gain in the drag will be of the same order as in the slender body case. In
fact, we calculate the value of the relative drag [ = 20, /C,° (C,° = drag
coefficient (Cp) of an equivalent circular cone) depending on the parameter
g and the thickness parameter r, . The calculated values of [ as a
function of g for different values of r, according to Formula (2.3) are
shown in Fig. 3. From the curves, it is clear that for increased body thickness,
the relative drag incrcases; the behavior of the drag is analogous to the
case of the slender body, and for n = 15, it is smaller than the drag of an
equivalent circular cone by roughly 20 times. 1In Fig.3, the corresponding
values of the drag computed by the slender body formula (in formula (17) of
[1] the factor 0.25 is missing) agree with the drag curve for thick cone
with r, =0 .,

The results obtained above are based on the pressures determined by New-
ton's formula. For flows around simple bodlies (bodies of revolution, cones
at angles of attack, etc.), the Newtonian formula gives good approximations,
as is shown by comparison with experiments, starting from Mach 5 and higher.
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For bodies of more complicated configurations, there are no rellable experl-
mental results in the literature to permit us to Jjudge the validity of the
Newtonlan theory. Thus, as a useful error estimate, we have the following
statement. For hypersonic flow past pointed bodles (¥ - =), there occurs an
attached shock wave, which differs from the

20 _ body surface by an angle of the order
L
r O(e) (e=(n—1)(x<9 1!
r=06 x» 1s the ratio of specific heats., Value of
0 thls angle determines the correction for the

Newtonian formula for slightly curved surfaces.

a4 In the glven case, the surface of the opti-
/ mum body obtained is concave (if we set r, = r,,
then the surface will be convex). However,

2 according to Fig.2, the curvature of the cross-
section contours 1is small, except for a reglon
of small radll in the nelighborhood of the

\<L\\::: stagnation point. Consequently, the pressure

10

by the Newtonian formula will be close to the
true value over a large part of the body sur-
face. As to the region in the neighborhood of
thie edge, there may actually occur a signifi-
{ 2 J cant deflection towards the rise of pressure.
Thic means that the predicted decrease in wave
Flg. 3 drag by a factor of twenty 1s an exaggeration.
It is also clear that for large values of n,
the boundary layer completely fills the space between the polnts, and the
Newtonlan flow pattern will not occur.

3. The solutlon of the varlational problems for slender bodles and for
the case considered permits the constructlion of optimum cross-section con-
tours only for those values
£ of the parameter s which

\ ”21 are included between the

<

———— defined limits.

£* tet
V/ In particular, for a fixed
=1 but not very large value of
n , the solution does not
£ exlst when the parameter s

; 1s near to unity. Neverthe-
/\ / less, it i of interest to

find the shape of the cross-

sectlion contour for a mini-
mum drag body with a fixed
—> number of points n as g
tends to 1. To this end, let
us conslder smooth admissible
curves with a flinite number
<//t=V§ of discontinuities of the
derivatives, at which the
angle ¢ Dbetween the polar
radius and the tangent satis-
fies the inequality

Fig. &% Flg. 5 0<<o /2.
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The latter 1s necessary to exclude those admissible curves whlch are wavy-
shaped and close to extremals with n larger than that given. Let the
extremal ApC (Fig.4) correspond to the minimum value of the parameter g ,
such that for smaller value of the parameter, there are no two-sided extre-
mals. Then the smallest value of the drag may be attalned at the boundary
with ¢ =0 or ¢ = E/2 . The first possibilit ¢ = O can never be real-
ized, so that we shall consider the case ¢ = m/2 , which corresponds to an
optimum contour consisting of the arc AF of the circle and the extremal
EC, . Using the general formula of the first variation, one easlly estab-
lishes the fact that for a slender body, the angle ¢ at the point gz 1is
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Op =% /4 The parameters of the contour and the location of the point £
{angle y) are determined with the ald of the formulas in [1].

It now remains to clarify, what is to be done in the case when the para-
meter 8 decreases to such a value that the extremal at point 4 has the
angle ¢ = n/ 4 , and moreover, there exist extremals of the type A4BC ,
corresponding to still smaller values of this parameter; 1.e. there exists
a range of values of the parameter s , for which it is possible to construct
two optimum contours: one of the type 4BC, the other of type AxC, .
Depending on the form of the functional, elther of the contours may corres-
pond to the least drag. The investigation may be carried through in the
following manner. Consider the necessary Welerstrass tast, for which alo
the extremal E(@, r, ', R) > (0 for all possible admissible elements (psrsR).
After some simple calculations, this condition may be written as

E{+ 8 3 -+ 2 1 — g2
m—(mscy—— 57— e’ 0+ cotc+Tts—)>() (t=_r£’—)

E¥ =

The sign of the function £ 1s determined by the sign of the expression
in parentheses. Results of a gualitative study shown in Fig.5 indicate that
if along the extremal U <t < 1. everywhere, then E* > 0 for any positive
angles ¢ . If however an extremal contains a plece along which 1 <t < V'3,
then on that extremal the minimum is not attailned. This leads to the con-
clusion that for values of the parameter ¢, > 1 1t 1s necessary to pass
to boundary extremum. The drag of the optimum body, as the parameter s
tends to unity, will rise sharply to the value corresponding to the drag
of a circular cone. Investigation of boundary extrema for conical bodles
offers no difficulties, but the angle Sp is somewhat different from that
given by Formula Op = tant Vi_'f‘_'t;é
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