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In [l] an optimum shape of a three-dimensional slender body was found on the 
basis of Newtonian flow. The restriction for thickness of the body was dlc- 
tated by the fundamental necessity to reduce the problem to solving an ordl- 
nary differential equation, since otherwise, the extremals are determined by 
a complicated nonlinear second order partial differential equation. In some 
cases, however, retaining the expression for the drag obtained In Cl], and 
restricting the class of admissible surfaces, It Is possible to find without 
significant complications the optimum shapes of a thick three-dimensional 
body. For example, In the class of arbitrary conical surfaces (f(x) = X, 

t / 
Ofz< 1, Flg.1) the cross section of thebody 
of minimum draa Is determined by the condition 
Of the minimum'-of the functlonai 
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Fig. 1 

Here the drag coefficient C, (C ) Is associated with the maximum Cross- 
section area S . We note in passI!& that a drag formula similar to (0.1) 
has been applied In his studies by G.I.Malkapar. 

Below, we consider only conical bodies. 

1. The corresponding variational problem Is formulated in the following 
fashion. In the class of smooth curves, possessing a finite number of points 
of discontinuity In the first derivative, we are to determine a closed curve, 
fo: which the functional (0.1) assumes a minimum. As additional conditions, 
we shall consider that the maximum cross-section area S and a character- 
istic radial dimension p are given. (All quantities are referred to the 
body length, assumed equa P to unity). Similar variational problems, as Is 
well known, are reduced to the s&utlon of hler's equation for the function 
P =)LP + r0 (i + ra + rar-r)-1. Moreover, along the extremals, the necessary 
Legendre condition Fr+*>O,must be satisfied, and at the points of dlscon- 
tlnulty of the derivatives, the Welerstrass-Erdman condition 
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1 + 9 + 3r’“P ’ -1 
a,_ = a*, = = (1 + pa + rf2r-2)2 t P,- = BP,+, p = (1 + ,:; ,'a,-2)l 

must be satisfied. 

The function F contains no independent variables, so that the corres- 
ponding Euler equation admits the integral 

z 2rsrr's 

(1 + r2 f r’2r-2) + (1 + r2 + rf2r-2)a + Ar2 7 C (1.2) 

In particular, It follows from (1.2) that C- hr2&0. Let us introduce 
the new variables P and s . In terms of these variables equation (3) is 
written In the form 

p2= 3&?--z2_l 
22" 1 Pa= 

rta (C - W) (1 -f. r2) 

r2 (1 f r2) ’ 
9 = 

r4 (1.3! 

We consider the sign of the square root. From the condition that the 
quantity under the square root sign be non-negative, we see that zs&'/s, 
from which we get pa< 1/s. forthenegative sign of the root. On the other hand, 
according to Legendre's condition, the lower bound of p2 equals I/, . Con- 
sequently, the sign in front of the root could only be positive; 
decreases from "/, , p2 Increases from '/, to - . 

and, as ,$ 
to 0 

We note one property essential for later discussion. From the conditions 
onthe dlscontlnultles (i.l), which may be expressed entirely in terms of P, 
It follows that crossing from one integral curve to another can occur only 
eltherP** 7 f op, or at the points of fixed radius r = r. . This shows 
that In order to construct closed extremal curves from Integral curves of 
different families, it Is necessary that the variable s assume the value 
zero. Then from (1.3), If A > 0 , we shall have p< C/h, and C > 0, and 
the solution corresponding to this Inequality may be constructed if the 
characteristic dimension re is the minimum value of the radius. 

If we assume that )i < 0, then we correspondingly obtain rs),Cik and 
c<o. This case corresponds to the problem In which the maximum radius 
Is the characteristic dimension. The two cases can be studied in an entirely 
similar manner, so that In what follows we shall consider only the first case. 
We Integrate Equation (1.3) from r, to r , and setting F2 = F,“t, we get 

t 

cP+c,=*+ s Q (4 dt (1 < t < to), 
C 

I t VI -I- ro2t 
to = hr,8 (1.4) 

q (a) = z -r/2 (3 - 22'+ v9 - 8~~)-'~, z2 = h(t, - t) (t Q 1 / ro2) tb2 

We carry out the determination of the constants to and X . From the 
condition of the closed extremal and the lsoperimetrlc condition, we have 

1. t. 

s q (4 dt 2n 
s 

q (z) dt _ 2ns S =-) 
c)/m-'o8t- 

s=- 

,) t VI + roet 
(2.5) 

n Ilr02 

Here n Is the number of double sections from which the extremal is com- 
posed. Formula (1.5), starting with some number n , permits the determi- 
nation of the constants C and X for each given value of this quantity. 
As a result, we obtain a countable set of extremals, satisfying all the 
conditions of the variational problem. The form of the cross-sections is 
completely determined by the parameters F, and 8 . Let us now calculate 
the drag of the optimum body thus determined. Accordlng,to (O.l), the drag 
coefficient may be written In the form 

2 JG! nr&'l* 
to 

6,= s 

s 
(to - t)” dt 

o t2 (3 + i/9 - 828) (3 - 2z2 + )/0--)I', 
(1.6) 

1. The relations thus obtained are complicated for actual computations, 
so that we shall introduce below some simple approximate formulas for calcu- 



lating solutions. Consider the class of aptlmum bodies, for which the para- 
meter h(t, - 1) (i f ~-3 < 1. Then, according: to (1.4), zS << 4. Reiectlng In 
the expression for 4(z) terms of order O(r ), we obtain from (1. ) the 
equation of the cross-section contour In the form 

_ 
‘h (2.1) 

using (1.51, we see that the constants 
the relations 

t, md A* are determined from 

1 =IT 

(2.2) 

According to the latter equations, the constants t and k* depend only 
on the parameter s . The drag coefficient (1.6) In this case Is given by 
Expression 

1)“’ - 3 vt, In (l/t, + v/t,-- 1 )I (2.3) 

This asymptotic formula is free from any restriction on the thickness of 
the body. As is clezir from the last relations, for any thickness of the 
body, the shape of the cross-section does not depend on f For al ender 
bodies, this fact always occurs [l] . 
(1.4) the quantity 7 

Consequently, even &o&h in Rxpresslon 
is present, we may expect that In general the depend- 

ence of the shape on ?his parameter will be weak. However, this approxlma- 
tlon understates significantly the function q(r), and as a result the 
approximate formulas are only valid for large values of n and may not be 

used to estimate the smallest possible values of this number. InFig. 2 
there are shown segments of the contour, from which the cross-section of a 
star-shaped body may be constructed. A calculation was carried out using 
(2.1) for the number of points n = 15 $‘or several values of the parameter 
s . Comparison with the results obtained from the slender body formulas [1] 
shows that for large values of 8 the contours coincide. Consequently, the 
gain In the drag will be of the same order as In the slender btdy cafe. In 
fact, we calculate the value of the relative drag L = $C,/C= (C, = drag 
coefficient (CD) of an equivalent circular cone) depending on the parameter 
8 and the thickness parameter r, . The calculated values of L as a 
function of 8 for different values of F0 according to Formula (2.3) are 
shown In Fig. 3. From the curves, it is clear that for Increased body thlckn?ss, 
the relative drag lncraases; the behavior of the drag is analogous to the 
case of the slender body, and for n = 15, it Is smaller than the drag of an 
equivalent circular cone by roughly 20 times. In Flg.3, the corresponding 
values of the drag computed by the slender body formula (in formula (17) of 
[l) the factor 0.25 Is missing) agree with the drag curve for thick cone 
with r0 = 0 . 

The results obtained above are based on the ressures determined by New- 
ton’s formula. For flows around simple bodies 
at angles of attack, etc.), 

P bodies of revolution, cones 
the Newtonian formula gives good approximations, 

as is shown by comparison with experiments, starting from Mach 5 and higher. 
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For bodies of more complicated configurations, there are no reliable experi- 
mental results In the literature to permit us to judge the validity of the 
Newtonian theory. Thus, as a useful error estimate, we have the followins 
statement. For hypersonic flow past pointed bodies-(,y - m), there occurs-an 

attached shock wave, which differs from the 
body surface by an angle of the order 

0 (E) (e = (x - 1)(x 9 I)-’ 

H is the ratio of specific heats. Value of 
this angle determines the correction for the 
Newtonian formula for slightly curved surfaces. 

FLs. 3 

In the given case, the surface of the opti- 
mum body obtained is concave (if we set r,= r,,,, 
then the surface will be convex). However, 
acccrding to Fig.2, the curvature of the cross- 
section contours is small, except for a region 
of small radii In the neighborhood of the 
stagnation point. Consequently, the pressure 
by the Newtonian formula will be close to the 
true value over a large part of the body sur- 
face. As to the region In the neighborhood of 
the edge, there may actually occur a slgnifi- 
cant deflection towards the rise of pressure. 
Thic means that the predicted decrease In wave 
drag by a factor of twenty is an exaggeration. 
It is also clear that for large values of n, 

the boundary layer completely fills the space between the points, and the 
Newtonian flow pattern will not occur. 

3. The solution of the variational problems for slender bodies and for 
the case considered permits the construction of optimum cross-section con- 

tours only for those values 
of the parameter s which 
are included between the 
defined limits. 

0 

Fig. 4 Fig. 5 

In particular, for a fixed 
but not very large value of 
n , the solution does not 
exist when the parameter s 
is near to unity. Neverthe- 
less, it IO of interest to 
find the shape of the cross- 
section contour for a mini- 
mum drag body with a fixed 
number of points n as s 

tends to 1. To this end,let 
us consider smooth admissible 
curves with a finite number 
of discontlnuities of the 
derivatives, at which the 
angle o between the polar 
radius and the tangent satis- 
fies the inequality 

o<a<n12. 

The latter Is necessary to exclude those admissible curves which are wavy- 
shaped and close to extremals with n larger than that given. Let the 
extremal ABC (Flg.4) correspond to the minimum value of the parameter s , 
such that for smaller value of the parameter, there are no two-sided extre- 
mals. Then the smallest value of the drag may be attained at the boundary 
with o = 0 or 0 = n/2 . The first e = 0 can never be real- 
ized, so that we shall consider the case o = n which corresponds to an 
optimum contour consisting of the arc AE of the'clrcle and the extremal 
EC, . Using the general formula of the first variation, one easily est;;- 
lishes the fact that for a slender body, the angle D at the point E 



Conical bodies of mlnlm’m drsd ln hypersonic&= flow 475 

--n/4. The parameters of the contour and the location of the point E 
F&ye $) are determined with the aid of the formulas In [l]. 

It now remains to clarify, what Is to be done in the case when the Para- 
meter s decreases to such a value that the extremal at point A has the 
angle a = n/ 4 . and moreover. there exist extremals of the type ABC , 
co&espondl& to-still smallerSvalues of this parameter; I.e.-there exists 
a range of values of the parameter 8 , for which It Is possible to construct 
two optimum contours: one of the type ABC, the other of type AEC, . 
Depending on the form of the functional, either of the contours may corres- 
pond to the least drag. The Investigation may be carried through in the 
following manner. Consider the necessary Weierstrass tast, for which alo 
the extremal E(q, r, r’,K) >,O for all possible admissible elements 
After some simple calculations, this condition may be written as 

E* = 1:‘ (1 + t3 
’ ( 3 -1 t2 1 -1 t2 

r4t4 sin2 Cl = 
wt2a--- 

2t cot2a+ -j-F >o 
) (l=$) 

The sign of the function E Is determined by the sign of the expression 
in parentheses. Results of a qualitative study shown in Fig.5 Indicate that 
if along the extremal C< t< 1. everywhere, then E*>O for any positive 
angles 0 . If however an extiemal contains a piece along which 1< t< v/3; 
then on that extremal the minimum is not attained. This leads to the con- 
clusion that for values of the parameter t, a 1 it is necessary to pass 
to boundary extremum. The drag of the optimum body, as the parameter s 
tends to unity, will rise sharply to the value corresponding to the drag 
of a circular cone. Investigation of boundary extrema for conical bodies 
offers no difficulties. but the angle o, is somewhat different from that 
given by Formula (JR =*ti_, 1/m. r, 
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